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SIGNIFICANCE AND EXPLANATION

Many applied problems in fluid mechanics can be modelled by nonlinear
evolution equations of the form
(E) u'(t) = A(t,u(t)) + B(t,u(t)) + g(t) .
Here u(t) = u(t,x) = u(t,x1,x2,x3) is a vector-valued function of time and
space, which represents the state of the system at time t. The operators
A and B are, typically, nonlinear partial differential operators in the

spatial variables, and g(t) = g(t,x) is a given forcing term.

o g

Equation (E) usually is so complicated that there is no hope of finding

gt o

explicit solutions in closed form. Thus it is important to obtain
gualitative, and whenever possible, quantitative information about the
solution u of (E). This often can be accomplished by showing that u is

the limit of an approximating sequence of solutions u, of simpler equations

(E,). For such an analysis (which will be given elsewhere) some crude

estimates of fu(t)ll are needed, where | I is a Banach space norm or some

other measurement of how large u(t) = u(t,x) is and how much u(t,x) varies

when x varies. Such estimates often can be obtained from a differential @

inequality of the form

d
ot lu(t) | < £(t,la(t) ) .

RSO S,

That inequality implies llu(t)ll < z(t), where =z(t) is the maximal (i.e.
largest) solution of the scalar ordinary differential equation

z' (t) = £(t,2(t)) e 30 ,

z(0) = Ma(o) 1l .

In this paper we investigate the properties of maximal solutions z(t),
especially those properties relevant to the limiting behavior of (E). 1In
particular, we determine in what sense the assumption fn + f implies

z » z, under hypotheses on f which will make it possible to apply our

n
results to (E).

The responsibility for the wording and views expressed in this descriptive !
summary lies with MRC, and not with the author of this report.
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3 . 1. Introduction

In this paper we consider the solutions of initial value problems of the form

(1.1) x2(t) f(t,x(t)) fipfnce <immyl

x(0) = w ,
where T is some positive number or «, We assume that w > 0 and that
b 5 R+ x R+ > R+ is a function such that f(t,y) is locally
(1.2) integrable in t for each fixed vy, and increasing and
right-continuous in y for almost every fixed t .
| These conditions do not determine x(t) wuniguely. (For instance, consider the eguation
x'(t) = /x(£) with x(0) = 0.) 1In this paper we prove the existence of a maximal

solution xmax(t) of (1.1). We show that Xnax not only dominates all solutions of

(1.1), but also all generalized solutions (in a sense made precise in Section 2) of (1.1)

- and of the more general initial value problem
v'i(t) < f(t,v(t)) (0 € e RS,
. (1.3) v(t) >0,
v(0) = w .
Also we obtain a best-possible result about the dependence of Rage (O W and f.

The existence of maximal solutions of (1.1) can be shown by a variant of Filippov's
methods; see [3]. However, we shall obtain the existence of maximal solutions as a
byproduct of our proofs of other results.

Theorem III in this paper is analogous to, and may be motivated by, the followinc
simpler result: ILet T be a positive number. 1Lét A be a directed set. Let £ = and

{fa : a € A} be measurable functions from (0,T) x R® into R' satisfyina

Sponsored by the United States Army under (ontract No. DAAG29-75-C-0024., This
material is based upon work supported by the National Science Foundation under ]
Grant No. MCS78-09525.
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[£,0t,x) = £ (£,9)] < K(t) Ix = y| ,
(1.4) I£,(e%) = £ (£,9)] < K(E) Ix - vl
I£,(e) | < M(t), £ (£.x)] < M(E) ,
for some fixed K,M € L1[0,T}. Then
t ;
lim ({ £ (s,y)ds = of £ (s,y)ds

for every t in [0,T] and y in R' if and only if for every p in [0,T] and w
in lp, the unique solution of

()= fa(t.X(t)) (pgt<T) ,

x(p) = w

converges (in the sense of nets, as a increases in A) to the unique solution of

x'(t) = £_(t,x(t)) R S L

x(p) W o
A variant of the above theorem was proved in [1]; however, the methods in [1] rely on the
Lipschitz condition in (1.4) and do not generalize to cover the case described in (1.2).
The above theorem and an assortment of generalizations can also be proved using the methods
in [2].

One reason for interest in problem (1.1), (1.2) is the following: let (U,lIl ) be

some Banach space of functions, and let A(t) be some time-dependent nonlinear partial

differential operator. Consider the initial value problem

u'(t)

u(0)

For many purposes it is important to

dat

where f satisfies (1.2). lLet w =

A(t)ult) (t 30 .

Uoc

have estimates on llu(t) .

u(t) satisfies some condition such as

la(t) I < £(t, Tu(t) 1)

la(o) l; then lu(t)ll £ x

4 of this paper will be used in [2] for estimates of this sort.

ma:

In many applications

x(t). Theorems II and III
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2. Statement of results

Notation.
let Bo= [0,+=). A function g is increasing if y > z implies g(y) > g(z), and

right-continuous if 7 vy implies g(yn) > g(y). A function x : [0,T) * R+ is

nonextendable (or T is final for x) Aif either T = @ or x(t) + ® as t increases
to T.

A function x ¢ [0,T) R+ is a solution of (1.1) if x is absolutely continuous on
compact subsets of [0,T), satisfies the differential equation almost everywhere in
[0,T), and satisfies the initial condition. Note that since w and f are

nonnegative, x(t) must be nonnegative and increasing.

Theorem I.

Assume f satisfies (1.2) and w is some nonnegative number.
Then (1.1) has at least one solution for some T > 0. Every solution x(t) of (1.1)
can be continued to a nonextendable solution x : [O,Tx) > R+.

Among the nonextendable solutions of (1.1) there exists a maximal solution

xm : {n,Tm) S R+. That is: X is a nonextendable solution; and if x is any other

nonextendable solution, then 0 < Tm < Tx and  x(t) < xm(t) for all T in [O,Th).

Clearly, the maximal solution is unique, since any two maximal solutions must dominate
each other.

Theorem II, below, concerns solutions of (1.3) in a generalized sense. The
differential inequality v'(r) < f(r,v(r)) is not suitable for some purposes, e.g. when
v is not differentiable. So we shall replace that inequality with the following more

general condition:

-l=

|
|




t
either (i) [ f(s,v(s))ds > 0 as t +r, and
r
t
lim supt+rIV(t)-V(r)]/I f(s,v(s))ds < 1,
s

r+€
(ii) [  f(s,v(s))ds = 0 for some € > 0 ,
2

and v(.) < v(r) on [r,r + €) .

The following notations will be used in Theorem II: f is a function satisfying
1.2, and ‘Wi [0LT) > R+ is some function. Hence (by Theorem I) for each p in

[0,T) there exists a unique maximal solution xp : [p,Tp) F; R+ of

'(t) = f(t t C30 B8 G ’
xi(t) = £(t,x (£)) (p < 5

xp(p) = v(p) .,

with final time Tp'
For motivation note that if v is a nonextendable solution of (1.1) then v

satisfies condition {2.3) of Theorem 11, and hence also the other conditions.

Theorem II.
let f be a function satisfying (1.2). Let v : [0,T) * R+ be a measurable function
which is bounded on compact subsets of (0,T). Assume T > 0, and either T = ® or
lim supt*Tv(t) = o, Define maximal solutions xp and final times Tp as in (2.2).

Then conditions (2.3), (2.4), and (2.5) are equivalent:

t
v(t) = v(r) < [ f(s,v(s))ds whenever 0 < r < t<T.

v(t) < lim infr+tv(r) for every t in (0,T),

and (2.1) holds for every r in [0,T) .

For every p in (0,T), Tp < T &nd wit) £ xp(t)

for all t in [p,Tp) .
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Moreover, if (2.3), (2.4), (2.5) hold, then also
(2.6) v has bhounded variation on (0,t] for every ¢ in [0,T),

£2.7) v 1is nonextendable, i.e. either T = © or 1lim inft+TV(t) = o,

Theorem III is stated in the terminology of nets. The reader mav read "seguence" for
"net" and let A = {positive integers} if he so chooses. The additional generality of
nets is needed for an application in [2].

The following notations will be used in Theorem III: £, and {fa : a € A} are
functions satisfying (1.2); w_ and {wa : a € A} are nonnegative numbers; p is a
nonnegative number. Hence we can define the maximal solutions X and Xa of the initial
value problems
( XL(t) = £_(t,x_(t))

x (p) =w_,

x;(t) = fa(t,xa(t))

xa(p) =N

\ with final times T and T,
© a

The 1lim inf's and 1lim sup's in the theorem are with respect to the ordering of A.

SRR, RN P,

Theorem III.
Let A be a directed set. Let f, and {fa : a € A} be functions satisfying
(1.2). Define maximal solutions Xt xa and final times Tor Ta as in (2.8). Then the

following conditions (2.9), (2.10), and (2.11) are equivalent:

€ t
(2.9) 1lim sup f fa(s,y)ds < f f (s,y)ds for every choice of y > 0 and t > r > 0
r T




R

for every choice of nonnegative numbers p and w_, if
(2.10) W for all a, then 1lim inf ‘1‘a > T,  and

lim sup xa(t) < x (t) for all t in ([p,T )

for every choice of nonnegative numbers p, w_, and
(2.11) {wa : a € A}, if 1lim sup WS Wy then lim inf Ta >T_  and

lim sup xa(t) < x (t) for all ¢ in [p,T) «

In particular, the implication (2.9) ==> (2.11) tells us that maximal solutions are
increasing and right=-continuous, in the sense that if
£t t
[ f,(siy)as ¥ [ £ (s,y)ds for all y >0 and t>r>0,
r r
and L +w_, then Ta + T  and xa(t) v x“(t) for every t in [p,T.).
The reader may feel uneasy about condition (2.9), and may prefer the simpler and more
familiar condition
(2.12) lim sup fa(s,y) < £ (s,y) for all s >0, y >0 .

1_dominated sequences, by Fatou's Lemma. The

In fact, (2.12) implies (2.9), at least for L
reverse implication does not hold. For instance, take A = {positive integers}, and
fa(s,y) = 1 + sin(as), f _(s,y) = 1. Then (2.9) holds but (2.12) does not. One purpose of

Theorem III is to show that condition (2.9) is in some sense natural, and best possible.

G-
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3. Auxiliary constructions

The proofs of the theorems will be based partly on some technical lemmas given below.

Lemma 1.

Let v : [0,T) » R+ be a measurable function which is bounded on compact subsets of

[0,T)e Assume that T > 0, and that either T = ® or 1lim supt*Tv(t) = oo, Let

& & R xR xR be a function satisfying (1.2). Assume that

t
v(t) - v(r) < f e(s,v(s))ds whenever 0 < r < t < T .
r

vit) < lim infr¢tv(r) for every t in (0,T) .

v(r) > lim sup_, v(t) for every r in [0,T) .
- tir b
If ace [0,7) and b e [a,®) and h > 0 satisfy | e(s,v(a) + h)ds < h, then
£ a
b < T and v(t) < v(a) + [ e(s,v(a) + h)ds < v(a) + h for all t in [a,b].
a
v 1is nonextendable, i.e. T = ® or lim infthv(t) = @

Note that in particular any nonextendable solution v of v'(t) = e(t,v(t))

satisfies the hypotheses of ILemma 1.

Proof of Lemma 1.

Since v(s) is bounded on any compact subset of [0,T), e(s,v(s)) is integrable
there. So (i) and (ii) follow immediately from (3.1).

et a,b,h satisfy the hypotheses of (iii). By (ii), since wv(a) < v(a) + h, there
is some ¢ in (a,T] such that v(.) < v(a) + h on [a,c). Choose the largest such

ce If ¢ < T, then (again by (ii)) v(c) > v(a) + he If ¢ =T, then

lim supt*Tv(t) < v(a) + h < ®» so we must have T = o,




For any t in [a,b] N [a,c] N [a,T), compute

& t
v(t) < v(a) + [ el(s,v(s))ds < v(a) + [ e(s,v(a) + h)ds
a a
b
< via) + [ e(s,v(a) + h)ds < v(a) + h .
a

In particular, if ¢ < T and c¢ < b, then v(a) + h < v(c) < v(a) + h, a
contradiction. So either ¢ =T = ®» (in which case b < ®=¢ =T), or ¢ < T (in which
case b < c). In either case we obtain b < c < T. Hence

t € [a,b] ==> t e [a,b] N [a,c) N [a,T) ==> v(t) < v(a) + jt e(s,v(a) + h)ds < v(a) + h.

This proves (iii). :

To prove (iv), suppose T and M = lim infu,rv(t) are both finite. Choose some

€ > 0 small enough so that f;-e e(s,M + 2)ds < 1. Then choose some a in (T - ¢€,T)

such that v(a) < M+ 1. Then [ e(s,v(a) + 1)ds ¢ [:_e e(s,M + 2)ds < 1. Bpply (iii)

with h=1 and b= T. This proves T < T, a contradiction. Hence (iv) holds. This

completes the proof of the lemma.

Let [[y]] be the greatest integer less than or equal to y. For each positive
integer n, let hn(y) = 2'"([[2"y]] + 1). Then hn(‘y) is the first multiple of

-n -Nn
2 after y. Hence y < hnﬂ(y) ghn(y) £y+2 , and hn(y) Yy as n *» »

Lemma 2.
Let f satisfy (1.2), and let w be a nonnegative number. Fix some positive
integer n. Then there exists a unique nonextendable solution xn H [0,Tn) > R+ of the

initial value problem




I

T ——

x' (t) = £(t,h (x _(£))) + 27" 0<t<T) ,
n n n - n

(3.2) _
x (0) = h (W) + 2 B i e

This solution has the following further properties:

n
Let i = i(n) = [[2 w]] + 3. Then for every integer j > i there exists a unioue

number tj (depending on n) such that xn(tj) = 2-nj. These numbers satisfy

0 = < < eee
L e S

and £, * T as j *» =,
j n

Furthermore:
Suppose v : [0,T) *> R+ and ‘e @ R+ x R+ > R+ satisfy the hypotheses of Lemma 1.

Suppose that v(0) < 2'"([[2"w]] + 2), and

. e
+
j+1 3%1 3

(3.3) / e(t,2 "jyat < LE(£,27 (5 + 1)) + 2 Mat
A S

J J
for j = 4i,i + 1,i + 2,..4,k = 1, where k 1is some integer greater than i.

Then T > t; v(t,) < 273 - 1) for 3= 4,4+ 1,..0k; and v(t) < x (t) for

all t in [O,tk].
If (3.3) holds for all integers j > i (in particular, if e(t,y) < f(t,y) + 27" for

all t>0 and y > 0), then T > Tn, and v(t) < xn(t) tor all t.' in [ﬂ,T“).

Proof.

First suppose that (3.2) does have at least one nonextendable solution

-n =
e ) »> £ y : i i =93
X [ ,Tn) R+. Since xn(t) > 2, the numbers tJ satisfying xn(tj) j are

uniquely determined by this solution x and tj increases to T, as j > = For

n’

eeEny S Z -n, -n
tj_1 <t< tj we have hn(xn(t)) 2 5, hence xn(t) f(ty2 4) + 2 . Therefore
-n > -n -n
(3.4) x,(8) = 27(3 = 1) + [ (f(s,273) +2 )ds By EEteln
% J J
=
-n =-n =-n
Since xn(tj) - xn(tj_1) =2 4= 2 (3=17) =2 , we must have

afe




(£(s,2" %) + 2 M1ds (i A, 25 e

if a nonextendable solution X, exists.

Formula (3.5) recursively determines tj uniquely from tj-1‘ Then (3.4) uniquely

determines x (t). We easily verify that the function x (t) constructed in this fashion

is a nonextendable solution of (3.2). This completes the proof of the first part of the

lemma.

Now suppose Vv, e, and k satisfy the hypotheses stated in the lemma. As an
induction hypothesis, assume that tj < 'I'v and v(tj) < 2-n(j - 1), for some 3j < k.

(This is clear for 3j = i, since t‘i 0.) Then

tj+1 i tj+1 e
| e(s,v(t.) + 2 ds < | e(s,2 j)ds
t : t

j 3
t:j+1 i o
< f [£(s,2” (3 + 1)) + 2 ]ds =

t.
3

by (3.3) and (3.5). Hence, by part (iii) of Lemma 1, T > tj+1' and

%% R
v(t) < v(tj) SV G xn(tj) £ x (%)

for all ¢ in [tj'tj+1]' This completes the induction, and the proof of Lemma 2.

Lemma 3.

Let £ satisfy (1.2), and assume w > 0. Then there exists a maximal solution

[O,Tw) -»R+ of (1.1). Moreover:
For each positive integer n, define xn : [O,Tn) = R+ as in Lemma 2. Then the

numbers T = increase to T,r and xn(t) wa(t) for each t in [O,Ta), uniformly on

compact subsets of [O,Tm).




e N N

Proof.

We easily verify that the hypotheses of Lemma 2 are satisfied by

-1
"1 and w(t) = X ,4(t). By Lemma 2, then, T

e(t,y) = £(t,h  (y)) + 2 n+1 = 'n

0 < x +1(t) < xn(t) for all ¢ in [O,Tn). Hence the numbers T, increase to some

limit T_ (possibly «), and x (t) decreases to a limit x (t) for every t in

[O,Tw), uniformly on compact subsets of [O,T”).

Since hn is an increasing function and y < hn+1(y) < hn(y) LS 72 2'", it follows

easily that h (x (t)) decreases to x_(t). For almost every s in fo,r.), f(s,.) is
increasing and right=continuous, hence f(s,hn(xn(s))) decreases to f(s,x _(s)) . Take
limits in the eguation

t

x (t) = x (r) = [ [f(s,h (x (s))) + 2 "ds .
n n & n n

By the Lebesgue Monotone Convergence Theorem, we obtain

t
X (t) = x (r) = [ £(s,x (s))ds .
T

Therefore x_ : [O,Tm) o R+ is a solution of (1.1).

Suppose T_ is not final for x_. Then T _ < =, and x (t) increases to some

finite 1limit M when ¢t 4 Tw. Fix some € > 0 small enough so that

b

[ f(s,m+2)ds < 1.
T

=3
©

Sinze f(s,hn(M G S R 2 2™"  decreases to f(s,M + 2), for all n sufficiently large we

have

[£(s/h (¥ + 2)) + 2 Mas <1 .
T ¢




sl

Since Tn 2T and xn * X0 faor all n sufficiently large we have 'I‘m7 SRE AL AL ST ang !

|

X (T, =Ll X (T~ 6) * 1 <M+ 1, Then

Tun
/
e

{f[s,hn[xn('ru -e) +1])+2"as <1 . :
-€

ki AT TIRS?

Apply part (iii) of Lemma 1 with v(s) = xn(s) and e(s,y) = f(s,hn(y)) + 27", We obtain

T, < ’I‘n, a contradiction. So Tp is final for Ko i.e. X is nonextendable.

To show the solution X is maximal, let v : [0,T) » R+ be any other nonextendable
§ solution of (1.1). It follows easily from Lemma 2 that T > 'rn and v(t) < xn(t) for
all t in [O,Tn). Taking limits, we find that T > Tﬂ° and wv(t) < xw(t) for all £ in

[0,T, )+ This completes the proof of Lemma 3.

el i e M el i S SRS
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4. Proofs of theorems

Proof of Theorem I.

Most of Theorem I was proved in Lemma 3. It suffices to show every solution

x ¢« [0,7) » R+ of (1.1) can be continued to a nonextendable solution. Suppose T is no+

final for x. Then T is finite, and x(t) increases to some finite limit L when
t + T. By Lemma 3, there exists a maximal, hence nonextendable, solution of

x'(t) = f(t,x(t)) (i e Tx) '

x(T) =L .

This completes the proof of Theorem I.

Proof of Theorem II.

(2.3) implies (2.4):

Trivial.

(2.4) implies (2.3):

Fix some g in [0,T) and some € > 0. It suffices to show that

£
(4.1) ; vit) = v(@) < (1 +¢€) [ £(s,v(s))ds
a

for all t in [q,T) (for then let € ¥+ 0). Let S = {t € [q,T): (4.1) holds}. Then
q € S.
s
Fix any r € S. Then wv(t) = v(r) < (1 + ¢) f f(s,v(s))ds for all t greater
r

than r and sufficiently close to r, by (2.1). For any such t,

vit) = v(q) = [v(t) = v(xr)] + [v(r) = v(q)]

t : o t
< (1+e) [ f£(s,v(s))ds + (1+e) [ f£(s,v(s))ds = (1+e) [ £(s,v(s))ds
r q q

and so t € S. Thus S is open on the right in [q,T). On the other hand, since
t

(1+€) [ £(s,v(s))ds is a continuous function of t and v(t) < lim dinf]
q

closed on the right in [q,T). Therefore S = [g,T). This completes the proof of (2.3).

e vit)s S im

“13=

o




(2.3) implies (2.7):

Immediate from part (iv) of Lemma 1.

(2.3) implies (2.5):

By a translation of p, we may assume without loss of generality that p = 0. The

function x0 : IO,TO) > R+ of Theorem 11 is the same as the function X, ¢ [O,Ta) + R of

+
Lemma 3, with w = v(0)., By Lemma 2, Tn £ T and xn > ve. Hence, by Lemma 3, Tm‘i T
E | and x_ > V.

©

(2.5) implies (2.6):

Fix t in [0,T). By hypothesis, M = sup{v(s) : 0 <s < t} is finite. Since
f(.,M + 1) 1is integrable on [0,t], there is some u > 0 such that
b
[ fts,M+ 1Nas <1 if 0<a<b<t and b-agu.
a
It follows by lemma 1, part (iii), that
Lf “0ic A b, bi=taldin,. then

r
T,>b and x_(r) < v(a) + [ f(s,v(a) + 1)ds

i
i
(4.2) =
_5 for all r in [a,b], hence in particular
i b
« v(b) = v(a) < x_(b) = v(a) < [ f£(s,M+ 1)ds .
| a
l o
E Let any partition
(4. = “ee
3) 0 = g, < L, <8 < e T

>£ [0,t] be given. Choose a refinement

0 =5 <5, <85, € see < sn =t

i 0 1 2

i such that maxi(si - si_1) < y. We have

} n

i V(sn) = v(so) = 2 [V(Si) - v(si_1)]
i=1
? v 3 .

S AR TR IR D [vis,) = v(s,_.)] .

=1 i i=1 oy i i=1

+ -
where [w] = max{w,0}, [(w] = max{-w,0} . Hence
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lvte) = wie, ) < ) Ivis,) = vis; )

1 ok 1

)

SR

+
LvGsd ) = vlig g e F

. : IV(si) = v(si

1

—1

]
(¥}
(=)

[v(sg) = vis,_ 17 + v(s)) = v(s)

i t
[ f(s,M+ 1ds+M+0=2] f(s,M+ 1)ds +M .,
s 0

IA
()
[e=t=}

The right side is independent of the choice of partition (4.3). This proves (2.6).

(2.5) and (2.6) together imply (2.3):

Fix t and r, 0 < r < t < T. By hypothesis, M = sup{v(s) : 0 < s < t} is
finite. Choose u > 0 to satisfy (4.2).

By (2.6), v has at most countably many discontinuities in [0,t], each
discontinuity is a jump, and the magnitudes of the jumps are summable. Hence for each

positive integer n, the set

B = {s e (r,t) : |v(st) - w(s)| > 27" or Iv(s-) - w(s)] > 27"}

is finite. The sets An form an increasing sequence, and v is continuous at every

@
s € (r,t)\Un=1 An .

The sets

B = {r +2 k(- 1): k=0,1,2,...,2")

also form an increasing sequence of finite sets; hence so do the sets Cn = Ah U Bn'

Temporarily fix any integer n > logz((t - r)/u). Suppose C_ consists of the points

n

<4 ST = < ass = .
(4.4) Cn L. so < s1 52 < < sm .

-n
Then si - s, SR SUEST) G TEY

R

by (4.2). Therefore we can define a function w : [r,t] » R+ by taking

n
wn(si) = v(si) for 0 <i<m,

w (s) = x ('8)  for
> Si=1

A
0

< s

811 i’

«15=
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Hence

v(s) < wn(s) oMo Sferiall e ign fyot] - ‘and
s s
w. ls) = wis ) + f f(g,x (a))dguc ala. =) f £(a,¥ + 1)dq
(4.5) 3 e %y WA N
i-1 i=1
for all s in [si_1,si), and
m m
v(it) - v(r) = ‘Z [v(si) - V(Si-1)] < .Z [xs‘ (si) - v(si_1)_

i=1 i=1 i-1
(4.6) s,

m 2 t

= fls,x_  (s))ds = / £(s,w (s))ds .
i=1 s, i=1 X
i=-1
Now suppose n > logz((t - r)/u) + 1. For any Siq and s; in C,, both Wy,
and Wo.q are defined on [si_1,si) as maximal solutions of w'(s) = f(s,w(s)), with
initial values wn(si_1) and wn-1(si-1)' respectively. But
= i y [ v - This

wn(si_1) v(si_1) < wn_1(si_1) since si_1 € Cn Hence wn < wn_1 on ~si_,',si) s
holds for 1 < i< m so wn < wn_1 on [r,t]l. Thus
(4.7) v > LA > wn+2 > eee > v on [r,t] ,

and w (s) = v(s) for all s in Cg..
B | We wish to show wn(s) decreases to v(s) for every s in [r,t]. This is clear
for every s in lJ;:1 C e Fix any s in [r,t]“J:;1 Cn' Then v(.) is continuous at

s. Temporarily fix some large n, and let C, be as in (4.4). Choose i so that

si 1 < s« si. We shall apply inequality (4.5). As n » &, Siq + s, hence

v(si_1) + v(s) and f: f(q,M + 1)dag +» 0. Taking limits in (4.5), we obtain
i=1

lim SUP Lo wn(s) < v(s)se In view of (4.7), then, wn(s) decreases to v(s).

For almost every s in [r,t], f(s,.) is increasing and right-continuous, so |
f(s,wn(s)) decreases to f(s,v(s)). Also f(s,kn(s)) < f(s,M + 1), which is an

l ! integrable function of s. By Lebesque's Dominated Convergence Theorem, from (4.f) we

obtain
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t
v(t) - v(r) ¢ [ f(s,v(s))ds .
i

This proves (2.3), and completes the proof of Theorem II.

Proof of Theorem III.

(2.11) implies (2.10):

Trivial.

(2.,9) implies (2.11):

Without loss of generality let p = 0. Let f =f , w=w_. Fix any positive

integer n, and define x , i, and {t.} as in Lemma 2. Fix any integer k > i. Then

3
for all a € A sufficiently large, wo g Z-n([[2nw”]] + 2) (since 1lim sup w £ w_) and

Lo, A
i -n L -n -n
i £,(£,2 7 5)a < [ [£(Ee2t s(30 % 1))+ 25 lat
s it
5) ]
(3 =4i,i + 1,i + 2,00,k = 1), by (2.9). Hence, by Lemma 2, Ta > tk' and :4:a K, xr on

[0,ty]. Therefore 1lim inf Taz tk' and lim sup xa(t) <at)SSforsadl it din fo,t‘(f-

n
Let k > » and then let n » «; this proves lim inf 'I'a > T, and lim sup xa(t) < x (t)

for ail ¢ in [O,Tm).

(2.10) implies (2.9):

£ t
Suppose 1lim sup f fa(s,y)ds > f fm(s,y)ds for some y > 0 and t > r > 0. Since
r r

t
f f (s,.)ds is right-continuous, we have in fact
r
t £
lim sup f fa(s,y)ds > f f sy + €)ds
r r
for some € > 0. Partition the interval ([r,t] into n pieces [r',t'! of lenath

(t = r)/n. For n large enough, all of the pieces must satisfy

t'
(4.8) / £ (s)y + €)ds < €.
r'

T

sﬁt

ik




On the other hand, at least one of the pieces must satisfy

ol
(4.9) lim sup [ £ (s,y)ds > ] £ s,y + €ds .
x? et
Fix this choice of r' and t'. let p =r' and wa TLW BV and define maximal

solutions X, and x_ and final times Ta and T, as in (2.8). By hypothesis (2.10) we
have 1lim inf Ta > T,  and
(4.10) lim sup xa(s) < xw(s) for every s in (r',T ) .
Since xm(r') =y, we can use (4.8) and part (iii) of Lemma 1 to show that o> t' and
that

t!

(4.11) x It') <y + [ £ (Byg + E)dS »
!-l

Then for all a € A sufficiently large we have Ta > t' and

tl
] - ]
x_(£') = x (r') + 1{' £,(s.x, (s))ds
(4412)
: i £
l LA+ 1{' £ (s,x (r'))ds =y + i“ £,(s,y)ds .

Combine (4.10) (with s = t') and (4.9), (4.11), (4.12); this gives us a contradiction.

o (2.10) implies (2.9). This completes the proof of Theorem III.
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